
git & devops
phil



whoami
phil

experience with git: 5 years

experience with devops: a little

the internet is your best friend when you don’t have an answer

slides: https://x4m3.rocks/talks/git-devops.pdf

https://x4m3.rocks/talks/git-devops.pdf


on today’s program
● git
● devops



wtf is git?
scm: source control management

● bazaar (ubuntu)
● cvs (netbsd, openbsd)
● git (linux kernel, a billion projects)
● mercurial (mozilla, facebook)
● apache subversion (webkit)



git history
created by Linus Torvalds to maintain the kernel in april 2005 (15 years ago!)

● fast
● distributed (not centralized)
● no corruptions

2 weeks to get something working

1 month later: kernel 2.6.12 released with git

https://github.com/git/git/tree/e83c5163316f89bfbde7d9ab23ca2e25604af290

https://github.com/git/git/tree/e83c5163316f89bfbde7d9ab23ca2e25604af290




git config
~/.gitconfig



gui > cli
● gitg 👍
● gitkraken
● gitk
● github desktop
● vscode
● jetbrains

gui is bad for you



gui < cli
you learn by doing it manually

once you are comfortable with cli, move on with gui



git commit
commits help you keep track of your work

regular and small commits are important to see what you’ve done

with a nice message you know what you did

useful if you need to go back in time to fix a nasty bug



git commit message
first line: single short summary of the change

second line: blank

rest: description of the change, explain why you did that





git commit commands
git commit
git commit file1 file2
git commit -m <msg>
git commit --amend --no-edit



git back in time
git checkout <sha>
git reset HEAD^
git reset HEAD^ --hard

https://github.blog/2015-06-08-how-to-undo-almost-anything-with-git/

https://github.blog/2015-06-08-how-to-undo-almost-anything-with-git/


git branch
git branch
git branch my-feature
git branch -D my-feature
git merge my-feature
git branch -d my-feature

https://learngitbranching.js.org/

https://learngitbranching.js.org/


git diff
git diff
git diff master..my-feature
git diff sha..sha
git diff --staged



git stash
git stash
git stash pop
git stash list
git stash apply
git stash drop



git log
git log
git show sha
git blame path/to/file



git pretty log
https://raw.githubusercontent.com/x4m3/point/master/git/gitconfig

https://raw.githubusercontent.com/x4m3/point/master/git/gitconfig


git more
https://ohshitgit.com/

https://git-scm.com/book/en/v2

if it breaks rm -rf and start again

man git

https://ohshitgit.com/
https://git-scm.com/book/en/v2


on today’s program
● git
● devops



wtf is devops?
software development (dev) + information technology operations (ops)

1. coding
2. building
3. testing
4. packaging
5. releasing
6. configuring
7. monitoring



wtf is ci/cd?
Continuous Integration: make sure it builds and passes the tests

Continuous Delivery: publish easily



continuous integration



GitHub actions
free for open source, 2000 minutes for free accounts

3000 minutes for pro accounts (free for epitech students)

actions triggered by events (push on branch, pull request, etc)

works with nodejs, python, c, c++, java, php, rust, android, ios, etc



feedback on builds



get actions
GitHub Marketplace

https://github.com/marketplace?type=actions

https://github.com/sdras/awesome-actions

https://github.com/marketplace?type=actions
https://github.com/sdras/awesome-actions


what can you do?
● compile code
● multiple architectures
● different operating systems
● coding style
● unit tests
● code statistics
● security tests
● package application
● deploy to production
● push to another repo



example of workflow
1. compile code
2. check for epitech coding style
3. run unit tests
4. if everything passes push to git.epitech.eu
5. send message to discord / telegram / teams



let’s go custom
.yml or .yaml files in .github/workflows

https://help.github.com/en/actions/reference/workflow-syntax-for-github-actions

https://help.github.com/en/actions/reference/workflow-syntax-for-github-actions


git remote
git remote add github git@github.com:x4m3/repo.git

vim .git/config



example of workflow



let’s go
1. compile code
2. check for epitech coding style
3. run unit tests
4. if everything passes push to git.epitech.eu
5. send message to discord / telegram / teams



thanks
https://x4m3.rocks/talks/git-devops.pdf

https://x4m3.rocks/talks/git-devops.pdf

